Home
Class 10
MATHS
[4(x+10),(i)(x+8)(x-10)],[(3)/(2))(y^(2)...

[4(x+10),(i)(x+8)(x-10)],[(3)/(2))(y^(2)-(3)/(2)),(0)(3-2x)(3+2x)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Use suitable identities to find the following products: (i) (x+4)(x+10) (ii) (x+8)(x-10) (iii) (3x+4)(3x-5) (iv) (y^2+3/2)(y^2-3/2) (v) (3-2x)(3+2x)

Use suitable identities to find the following products: (i) (x+4)(x+10) (ii) (x+8)(x-10) (iii) (3x+4)(3x-5) (iv) (y^2+3/2)(y^2-3/2) (v) (3-2x)(3+2x)

Use suitable identities to find the following products: (i) (x+4)(x+10) (ii) (x+8) (x-10) (iii) (3x+4) (3x -5) (iv) (y^2+3/2)(y^2-3/2) (v) (3-2x)(3+2x)

Show that: (x^(2)+y^(2))^(5)=(x^(5)-10x^(3)y^(2)+5xy^(4))^(2)+(5x^(4)-10x^(2)y^(3)+y^(5))^(2)

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

If _(i-1)(x_(i)^(2)+y_(i)^(2))<=2x_(1)x_(3)+2x_(2)x_(4)+2y_(2)y_(3)+2y_(1)y_(4)sum_(i-1)^(4)(x_(i)^(2)+y_(i)^(2))<=2x_(1)x_(3)+2x_(2)x_(4)+2y_(2)y_(3)+2y_(1)y_(4) the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)),(x_(4),y_(4)) are the vertices of a rectangle collinear the vertices of a trapezium none of these

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0