Home
Class 11
MATHS
" a) "f(x)=ln(x+sqrt(x^(2)+1))...

" a) "f(x)=ln(x+sqrt(x^(2)+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R,f(x)=ln(x+sqrt(x^(2)+1)) and g:R rarr R,g(x)={x^((1)/(3)),x 1 then the number of real solutions of the equation,f^(-1)(x)=g(x) is

The function f (x) = log (x+ sqrt(x^(2) +1)) is-

If f:R-> R such that f(x)=ln(x+sqrt(x^2+1)). Another function g(x) is defined such gof(x)=x, for all x in R. Then g(2) is (A) (e^2+e^-2)/2 (B) (e^2-e^-2)/2 (C) e^2 (D) e^-2

Which of the following functions is (are) even, odd, or neither ? (i) f(x)=x^(2)sinx " (ii) " f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2)) (iii) f(x)=log((1-x)/(1+x)) " (iv) " f(x)=log(x+sqrt(1+x^(2))) (v) f(x)=sinx-cosx " (vi) " f(x)=(e^(x)+e^(-x))/(2)

Let f(x)=ln(x+sqrt(x^(2)+1)) and A=|[f(sin217 pi),f(sin(pi/6)),f(e^(pi))],[f(cos((2 pi)/(3))),f(cos(2017 (pi)/(2))),f(tan((pi)/(3)))],[f(-e^(pi)),f(cot((5 pi)/(6))),f(0)]| then det(A) = ?

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: f(x)=ln(x+sqrt(1+x^(2)))

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: f(x)=ln(x+sqrt(1+x^(2)))