Home
Class 12
MATHS
2sqrt(cot(x^(2)))quad " 8."cos(...

2sqrt(cot(x^(2)))quad " 8."cos(

Promotional Banner

Similar Questions

Explore conceptually related problems

If the maximum and minimum values of (sin x)/(sqrt(1-cos^(2)))+(cos x)/(sqrt(1-sin^(2)x))+(tan x)/(sqrt(sec^(2)x-1))+(cot x)/(sqrt(cos ec^(2)-1)) when it is defined are M and m respectively then the values of M-m is

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos [tan^(-1) (cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

" If "int(sqrt(cos2x))/(sin x)dx=-log|cot x+sqrt(cot^(2)x-1)|+A+c" Then "A" is equal to "

int_( then )^( If )sqrt(3cot^(2)x+4)dx=A ln sqrt(3)cot x+sqrt(4+3cot^(2)x)|-sin^(-1)((cos x)/(B))+C

If 0ltxlt1 then sqrt(1+x^(2))[{x cos (cot^(-1)x)+sin(cot^(-1)x}^(2)-1]^(1/2)

if: f(x)=(sin x)/(sqrt(1+tan^(2)x))-(cos x)/(sqrt(1+cot^(2)x)), then find the range of f(x)

The period of f(x)=((sin x)/(sqrt(1+tan^(2)x)))+((cos x)/(sqrt(1+cot^(2)x)))

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos"[tan^(-1){"sin"(cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))