Home
Class 12
MATHS
Q rarr int(-)^(3)(tan^(-1)((x)/(1+x^(2))...

Q rarr int_(-)^(3)(tan^(-1)((x)/(1+x^(2)))+tan^(-1)((1+x^(2))/(x)))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx

int_(-1)^(3)(Tan^(-1)""(x)/((x^(2)+1))+Tan^(-1)""(x^(2)+1)/(x))dx=

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

(3)int(tan^(-1)x)dx/(1+x^(2))

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx is

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is