Home
Class 10
MATHS
(4),5n,-3n=19;m-6n=-7...

(4),5n,-3n=19;m-6n=-7

Promotional Banner

Similar Questions

Explore conceptually related problems

5m-3n=19,m-6n=-7

Solve the following simultaneous equations. 5m-3n=19,m-6n=-7 .

Solve the Simultaneous equations 5m - 3n = 19, m - 6n = -7

Solve the following simultaneous equations. 5m - 3n = 19, m - 6n = -7

4m+3n=18.3m-2n=5

Add the following expressions: 3n^(2)+5mn-6m^(2), 2m^(2)-3mn -4n^(2), 2mn-3m^(2)-7n^(2)

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

Check whether the value given in the brackets is a solution to the given equation or not: (a) n+5=19(n=1)7n+5=19(n=1)7n+5=19(n=2)( d) 4p-3=13(p=1) (e) 4p-3=13(p=4)(f)4p-3=13(p=0)