Home
Class 11
MATHS
I=int(0)^( pi)(xdx)/(1+sin x)...

I=int_(0)^( pi)(xdx)/(1+sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(xdx)/(1+sin x)dx

int_(0)^( pi/2)(xdx)/(sin x+cos x)

int_(0)^( pi)sin xdx

What is int_0^pi (xdx)/(1+ sin x) equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to

int_ (0) ^ (pi) (xdx) / (1 + cos alpha * sin x) = (pi alpha) / (sin alpha), 0

I_(1)=int_(0)^((pi)/(2))(sin x-cos x)/(1+sin x cos x)dx,I_(2)=int_(0)^(2 pi)cos^(6)xdx,I_(3)=int_((pi)/(2))^((pi)/(2))sin^(3)xdx,I_(4)=int_(0)^(1)1n((1)/(x)-1)dx. Then I_(1)=I_(3)=I_(4)=0,I_(1)!=0I_(1)=I_(3)=0,I_(4)!=0I_(1)=I_(2)=0,I_(4)!=0I_(1)=I_(2)=I_(3)=0,I_(4)!=0

int_(0)^( pi)1+sin xdx