Home
Class 12
MATHS
y={x+sqrt(x^(2)+1)}^(m)quad " p.t."(x^(2...

y={x+sqrt(x^(2)+1)}^(m)quad " p.t."(x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

If y = (x+ sqrt(x ^(2) -1))^(m) then (x ^(2) -1) y_(2) + xy _(1)=

If y=x+sqrt(x^(2)-1)," then "(x^(2)-1)y_(2)+xy_(1)=

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

y=[log(x+sqrt(x^(2)+1))]^(2) then prove that (x^(2)+1)y_(2)+xy_(1)=2

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .

If y={x +sqrt(x^(2)+1)}^(m) , then show that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-m^(2)y=0.

If y^(1/m)= x + sqrt (1 + x^(2)) "then" (1 + x^(2))y_(2)+ xy _(1) = ?

If y={x+sqrt(x^2+1)}^m , show that (x^2+1)y_2+x y_1-m^2\ y=0

y = [x + sqrt(x^2 + 1)]^p , prove that (x^2 + 1)y_2 + xy_1 - p^2y = 0