Home
Class 12
MATHS
" ate "lim(n rarr oo)(1)/(n)sum(r=1)^(2n...

" ate "lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=

lim_(n rarr oo)(1)/(n^(4))sum_(r=1)^(n)r^(3)=

{:(" "Lt),(n rarr oo):}1/n sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2)))=

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is