Home
Class 12
MATHS
" Q."6" The value of "lim(x rarr0)(1)/(x...

" Q."6" The value of "lim_(x rarr0)(1)/(x)int_(0)^(x)(1+sin2t)^(1/t)dt" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

The value of lim_(x rarr0)(1+(1)/(x))^(x) is-

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

lim_(x rarr0)((1)/(x))^(sin x)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr0)x sin((1)/(x))

The value of lim_(x rarr 0) ((e^(x)-1)/x)

value of lim_(x rarr0)x^(2)sin((1)/(x))=0

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

The value of lim_(x rarr0)int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt