Home
Class 11
MATHS
" (iv) "4^(log(9)3)+9^(log(2)4)=10^(log(...

" (iv) "4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value 'x' satisfying the equation, 4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)is ____

If 4^(log_(9)(3))+9^(log_(2)(4))=10^(log_(x)(83)) then x=

The value of ' x 'satisfying the equation,4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83) is

Solve : (iii) 4^(log_(9^3))+9^(log_(2^4))=10^(log_(x^83))

The value 'x' satisfying the equation, 4^(log_(g)3)+9^(log_(2)4)=10^(log_(x)83)is ____

4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83), then x is equal to

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

If (4)^(log_(9) 3)+(9)^(log_(2) 4)=(10)^(log_(x) 83) , then x is equal to

If 4^("log"_(9)3) + 9^("log"_(2)4) = 10^("log"_(x)83), "then" x =