Home
Class 12
MATHS
" (i) "p(x)=x^(2)-2x+1" और "q(x)=x^(3)-3...

" (i) "p(x)=x^(2)-2x+1" और "q(x)=x^(3)-3x^(2)+2x-1

Promotional Banner

Similar Questions

Explore conceptually related problems

The LCM of two polynomials p(x) and q(x) is x^(3) - 7x + 6 . If p(x) = (x^(2) + 2x -3) and q(x) = (x^(2) + x - 6) , then the HCF is

The sum of the polynomials p(x) =x^(3) -x^(2) -2, q(x) =x^(2) -3x+ 1

Verify whether the following are zeroes of the polynomial, indicated against them . (i) p(x)=3x+1,x=-(1)/(3) (ii) p(x)=5x-pi,x=(4)/(5) (iii) p(x)=x^(2)-1,x=1,-1 (iv) p(x)=(x+1),(x-2),x=-1,2 (v) p(x)=x^(2),x=0 (vi) p(x)=lx+m,x=(-m)/(l) (vii) p(x)=3x^(2)-1,x=-(1)/(sqrt(3)),(2)/(sqrt(3)) (viii) p(x)=2x+1,x=(1)/(2)

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

The sum of the polynomials p(x) = x^(3) - x^(2) - 2, q(x) = x^(2) - 3x + 1

If P (x) = (x^(3) + 1) (x-1) and Q (x) = (x^(2) -x +1) (x^(2) -3x +2) , then find HCF of P (x) and Q (x) .

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: (i) p(x)=2x^3+x^2-2x-1,g(x)=x+1 (ii) p(x)=x^3+3x^2+3x+1,g(x)=x+2 (iii) p(x)=x^3+4x^2+x+6,g(x)=x-3

Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: (i) p(x)=2x^3+x^2-2x-1,g(x)=x+1 (ii) p(x)=x^3+3x^2+3x+1,g(x)=x+2 (iii) p(x)=x^3+4x^2+x+6,g(x)=x-3