Home
Class 12
MATHS
[" Q10"],[lim(n rarr oo)((n)/(n^(2)+1^(2...

[" Q10"],[lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n))" is equal to: "],[[" (1) "(pi)/(4)," (2) "tan^(-1)(3)],[" (3) "(pi)/(2)," (4) "tan^(-1)(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+.....+(1)/(n)]

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2) )+(n+2)/(n^(2)+2^(2))+(n^+3)/(n^(2)+3^(2))+.....1/n] =

lim_(n rarr oo)(e^(2n)(n!)^(2))/(2n^(2n+1))

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2)) =

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is