Home
Class 10
MATHS
If g={(1, 1), (2, 3), (3, 5), (4, 7)} is...

If `g={(1, 1), (2, 3), (3, 5), (4, 7)}` is a function given by `g(x)=alphax+beta` then the values of `alpha and beta` are

A

`( -1,2) `

B

`( 2,-1) `

C

`( -1,-2) `

D

`(1,2)`

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTION

    PREMIERS PUBLISHERS|Exercise SOLUTION TO UNIT EXERCISE|14 Videos
  • RELATIONS AND FUNCTION

    PREMIERS PUBLISHERS|Exercise SOLUTION TO THINKING CORNER|5 Videos
  • RELATIONS AND FUNCTION

    PREMIERS PUBLISHERS|Exercise EXERCISE 1.5|18 Videos
  • NUMBERS AND SEQUENCES

    PREMIERS PUBLISHERS|Exercise OTHER IMPORTANT OBJECTIVE TYPE QUESTIONS|23 Videos
  • STATISTICS AND PROBABILITY

    PREMIERS PUBLISHERS|Exercise OTHER IMPORTANT OBJECTIVE TYPE QUESTIONS|23 Videos

Similar Questions

Explore conceptually related problems

g={(1,1),(2,3),(3,5) , ( 4,7)} is a function such that g(x) = ax +b then a+ b

If alpha+ beta=-7 and alpha beta=10 then find the value of alpha-beta=__ .

If x+4y=14 is a normal to the curve y^2=alphax^3-beta at (2,3), then the value of alpha+beta is 9 (b) -5 (c) 7 (d) -7

Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the value f(alpha)f (beta) is

alpha beta x ^(alpha-1) e^(-beta x ^(alpha))

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

If alpha,beta are roots of x^2-3x+a=0 , a in R and alpha <1< beta then find the value of a.

If tanalpha=1/3,tanbeta=1/7 ,show that 2alpha +beta=pi/4