Home
Class 10
MATHS
D is the mid point of side BC and AE bot...

D is the mid point of side BC and `AE bot BC`. If BC=a, AC= b, AB=c, ED=x, AD=p and AE=h, prove that
`(i) b^(2)=p^(2)+ax+(a^(2))/(4)`
(ii) `c^(2)=p^(2)-ax+(a^(2))/(4)`
`(iii) b^(2)+c^(2)=2p^(2)+(a^(2))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
`2p^(2)+(a^(2))/(2)`
Promotional Banner

Topper's Solved these Questions

  • GEOMETRY

    PREMIERS PUBLISHERS|Exercise SOLUTION TO THINKING CORNER|7 Videos
  • GEOMETRY

    PREMIERS PUBLISHERS|Exercise SOLUTION TO PROGRESS CHECK|21 Videos
  • GEOMETRY

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 4.5|15 Videos
  • CO-ORDINATE GEOMETRY

    PREMIERS PUBLISHERS|Exercise Other Important Objective|25 Videos
  • MENSURATION

    PREMIERS PUBLISHERS|Exercise OTHER IMPORTANT OBJECTIVE TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

In AD bot BC , prove that AB^(2)+CD^(2)=BD^(2)+AC^(2)

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

In Delta ABC, "seg" AD bot "seg" BC, DB = 3CD . Prove that: 2 AB^(2) = 2AC^(2) + BC^(2)

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(2) .

Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2))|=4a^(2)b^(2)c^(2).

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(4)

In a right triangle ABC right angled at C, P and Q are points on sides AC and CB respectively which divide these sides in the ratio of 2 : 1. Prove that (i) 9 AQ^(2) = 9AC^(2) + 4BC^(2) (ii) 9BP^(2) = 9BC^(2) + 4AC^(2) (iii) 9 (AQ^(2) + BP^(2)) = 13 AB^(2)

In angle ACD=90^(@) and CD bot AB . Prove that (BC^(2))/(AC^(2))=(BD)/(AD)

With usual notations, in any triangle ABC, prove the following by vector method . (i) a^(2)=b^(2)+c^(2)-2bc cos A (ii) b^(2)=c^(2)+a^(2)-2bc cosB (iii) c^(2)=a^(2)+b^(2)-2bc cosC

Find the product (2a + b+c) (4a ^(2) + b ^(2) + c ^(2) - 2ab -bc -2ca)