Home
Class 10
MATHS
" 2.(i) "sqrt(3x+1)-sqrt(x-1)=2...

" 2.(i) "sqrt(3x+1)-sqrt(x-1)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt(3x+1)-sqrt(x-1)=2 .

Using properties of proportion, solve for x : (i) (sqrt(x + 5) + sqrt(x - 16))/ (sqrt(x + 5) - sqrt(x - 16)) = (7)/(3) (ii) (sqrt(x + 1) + sqrt(x - 1))/ (sqrt(x + 1) - sqrt(x - 1)) = (4x -1)/(2) . (iii) (3x + sqrt(9x^(2) -5))/(3x - sqrt(9x^(2) -5)) = 5 .

Differentiate the following function : (i) (x^(2) - 5x + 6)(x-3) , (ii) (sqrt(x) + 1/(sqrt(x)))^(2) , (iii) (3x^(2) + 2x + 5)/(sqrt(x))

Evaluate: ("lim")_(xvecoo)(sqrt(3x^2-1)-sqrt(2x^2-1))/(4x+3)

sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>(3)/(2)

Solve : (log_(2)(x-4)+1)/(log_(sqrt2)(sqrt(x+3)-sqrt(x-3))) = 1 .

(1+log_(2)(x-4))/(log_(sqrt(2))(sqrt(x+3)-sqrt(x-3)))=1

int(1)/(sqrt(3x+2)+sqrt(3x+1))

If 2x^(4)sqrt(2)=(sqrt(3)-1)+i(sqrt(3)+1), then x=