Home
Class 12
MATHS
x=[x1,x2,x3] and B=[[2b1,b1+b2],[b2+2b3,...

`x=[x_1,x_2,x_3]` and `B=[[2b_1,b_1+b_2],[b_2+2b_3,3b_2],[b_1+b_3,4b_3]]` z=`[[z_1],[z_2]]`,then`d/(dx)(xBz)=Bz and d/(dz)(xBz)=Bx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that if x_1, x_2, x_3!=0 |x_1+a_1b1a_1b_2a_1b_3a_2b_1x_2+a_2b_2a_2b_3a_3b_1a_3b_2x_3+a_3b_3|=x_1x_2x_3(1+(a_1b_1)/(x_1)+(a_2b_2)/(x_2)+(a_3b_3)/(x_3)) .

Show that if x_1, x_2, x_3!=0 |x_1+a_1b1a_1b_2a_1b_3a_2b_1x_2+a_2b_2a_2b_3a_3b_1a_3b_2x_3+a_3b_3|=x_1x_2x_3(1+(a_1b_1)/(x_1)+(a_2b_2)/(x_2)+(a_3b_3)/(x_3)) .

Show that if x_1, x_2, x_3!=0 |x_1+a_1b1a_1b_2a_1b_3a_2b_1x_2+a_2b_2a_2b_3a_3b_1a_3b_2x_3+a_3b_3|=x_1x_2x_3(1+(a_1b_1)/(x_1)+(a_2b_2)/(x_2)+(a_3b_3)/(x_3)) .

Show that if x_1, x_2, x_3!=0 |x_1+a_1b1a_1b_2a_1b_3a_2b_1x_2+a_2b_2a_2b_3a_3b_1a_3b_2x_3+a_3b_3|=x_1x_2x_3(1+(a_1b_1)/(x_1)+(a_2b_2)/(x_2)+(a_3b_3)/(x_3)) .

If A=[[1, -1, -2], [2, 1, 1], [4, -1, 2]], B=[[3], [5], [11]], X=[[x], [y], [z]] and AX=B then X=

If A=[[x,2,3],[-1,5,3]] , B=[[1,-2,y],[1,z,-2]] and C=[[3,0,1],[0,2,1]] , also A+B-C=O then find x,y,z

If A=[[x,2,3],[-1,5,3]] , B=[[1,-2,y],[1,z,-2]] and C=[[3,0,1],[0,2,1]] , also A+B-C=O then find x,y,z

If A=[[x,2,3],[-1,5,3]] , B=[[1,-2,y],[1,z,-2]] and C=[[3,0,1],[0,2,1]] , also A+B-C=O then find x,y,z

Write the number of solution of the following system of equation. a_1x+b_1y+c_1z=0 a_2x+b_2y+c_2z=0 a_3x+b_3y+c_3z=0 and [[a_1,b_1,c_1],[a_2,b_2,c_2],[a_3,b_3,c_3]] =0

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))