Home
Class 12
MATHS
lim(x->1^+)((sqrt(2x)(x-1))/(|x-1|))...

`lim_(x->1^+)((sqrt(2x)(x-1))/(|x-1|))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->2)(sqrt(x-1)-1)/(x-2)

lim_(x-> -1) (sqrt(x^2+8)-3)/(x+1)

lim_(xtooo)(sqrt(x^(2)-1))/(2x-1)=

lim_(x rarr1)[(sqrt(x)-1)/(x-1)+(x^(2)-1)/(x^(2)-x)]

Compute lim_(x to 1) (sqrt(x)-1)/(x-1)

lim_(x->\infty)sqrt(x^(2)+1)/(x+1)

lim_(x rarr1)(x-1)/(sqrt(x)-1)=

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

lim_(xrarr1^+)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^2-1))=