Home
Class 11
MATHS
Degree of the polynomial [sqrt(x^2+1)+s...

Degree of the polynomial `[sqrt(x^2+1)+sqrt(x^2-1)]^8+[2/(sqrt(x^2+1)+sqrt(x^2-1))]^8` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is the degree of the polynomial,[(2)/(sqrt(5x^(3)+1)-sqrt(5x^(3)-1))]^(8)+[(2)/(sqrt(5x^(3)+1)+sqrt(5x^(3)-1))]^(8) and m is the coefficient of x^(12) is

sqrt(2x+5)+sqrt(x-1)>8

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

Degree of the polynomial (x^(2)-sqrt(1-x^(3)))^(4)+(x^(2)+sqrt(1-x^(3)))^(4) is

If n be the degree of the polynomial sqrt(3x^(2)+1){(x+sqrt(3x^(2)+1))^(7)-(x-sqrt(3x^(2)+1))^(7)} then n is divisible by

if y=(sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1)), then (dy)/(dx) is

Differentiate the following function (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1))

The expression (sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(6)+((2)/((sqrt(2x^(2)+1)+sqrt(2x^(2)-1))^(square)))^(6) is polynomial of degree 6 b.8 c.10 d.12

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(2))sqrt(1+x^(2)))dx=