Home
Class 11
MATHS
For a positive integer n , find the val...

For a positive integer `n` , find the value of `(1-i)^n(1-1/i)^ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

For a positive integer n, what is the value of i^(4n+1) ?

If rArr I_(n)=int_(0)^(pi//4) tan ^(n)x dx , then for any positive integer, n, the value of n(I_(n+1)+I_(n-1)) is,

If n is any positive integer,write the value of (i^(4n+1)-i^(4n-1))/(2)

If n is any positive integer, write the value of (i^(4n+1)-i^(4n-1))/2 .

For positive integers n_(1), n_(2) the value of the expression (1+i)^(n_(1)) + (1+ i^(3))^(n_(1)) + (1+ i^(5))^(n_(2)) + (1+ i^(7))^(n_(2)) , where i= sqrt-1 is a real number if and only if

If I_(n)=int_(0)^((pi)/(4))tan^(n)thetad theta , for any positive integer n, then the value of n(I_(n-1)+I_(n+1)) is -

If n is any positive integer then the value of (i^(4 n+1)-i^(4 m-1))/(2)=

If n is any positive integer, then the value of frac{i^(4n+1)-i^(4n-1)}{2} equals

For positive integers n_1,n_2 , the value of the expression : (1+i)^(n_1)+(1+i^3)^(n_1) +(1+i^5)^(n_2)+ (1+i^7)^(n_2) , where i= sqrt(-1) is a real number if and only if :

If n is an odd positive integer then the value of (1+ i^(2n) + i^(4n) + i^(6n) ) ?