Home
Class 12
MATHS
[" If "A=[a^(2)-ab,ac],[ab,b^(2),bc],[a,...

[" If "A=[a^(2)-ab,ac],[ab,b^(2),bc],[a,bc]" and "a^(2)+b^(2)+c^(2)=1],[" then "A^(7)=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))] and a^(2)+b^(2)+c^(2)=1 , then A^(2)=

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .

If A=[(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2))], B=[(0,c,-b),(-c,0,a),(b,-a,0)] then AB=

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2