Home
Class 11
MATHS
Simplify(x^(a-b))^(a+b).(x^(b-c))^(b+c)....

Simplify`(x^(a-b))^(a+b).(x^(b-c))^(b+c).(x^(c-a))^(c+a)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • BASIC ALGEBRA

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 2.1|5 Videos
  • BASIC ALGEBRA

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 2.2|9 Videos
  • BINOMIAL THEOREMN,SEQUENCES AND SERIES

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE(Choose the correct option for the following)|31 Videos

Similar Questions

Explore conceptually related problems

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)^3,(x-c)^3),((x+a)^3,(x+b)^3,(x+c)^3)| =0, a,b and c being distinct real numbers.

Show that ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 is an identity.

The area of a parallelogram formed by the lines a x+-b x+-c=0 is (a) (c^2)/((a b)) (b) (s c^2)/((a b)) (c) (c^2)/(2a b) (d) none of these

The quadratic equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 has equal roots if

If y=f(x) is a monotonic function in (a,b), then the area bounded by the ordinates at x=a, x=b, y=f(x) and y=f(c)("where "c in (a,b))" is minimum when "c=(a+b)/(2) . "Proof : " A=int_(a)^(c)(f(c)-f(x))dx+int_(c)^(b)(f(c))dx =f(c)(c-a)-int_(a)^(c) (f(x))dx+int_(a)^(b)(f(x))dx-f(c)(b-c) rArr" "A=[2c-(a+b)]f(c)+int_(c)^(b)(f(x))dx-int_(a)^(c)(f(x))dx Differentiating w.r.t. c, we get (dA)/(dc)=[2c-(a+b)]f'(c)+2f(c)+0-f(c)-(f(c)-0) For maxima and minima , (dA)/(dc)=0 rArr" "f'(c)[2c-(a+b)]=0(as f'(c)ne 0) Hence, c=(a+b)/(2) "Also for "clt(a+b)/(2),(dA)/(dc)lt0" and for "cgt(a+b)/(2),(dA)/(dc)gt0 Hence, A is minimum when c=(a+b)/(2) . If the area enclosed by f(x)= sin x + cos x, y=a between two consecutive points of extremum is minimum, then the value of a is

If g(x)=(f(x))/((x-a)(x-b)(x-c)) ,where f(x) is a polynomial of degree <3 , then intg(x)dx=|[1,a,f(a)log|x-a|],[1,b,f(b)log|x-b|],[1,c,f(c)log|x-c|]|-:|[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|+k (dg(x))/(dx)=|[1,a,-f(a)(x-a)^(-2)],[1,b,-f(b)(x-b)^(-2)],[1,c,-f(c)(x-c)^(-2)]|:-|[1,a,a^2],[1,b,b^2],[1,c,c^2]|

Prove that |((b+x)(c+x),(c+x)(a+x),(a+x)(b+x)),((b+y)(c+y),(c+y)(a+y),(a+y)(b+y)),((b+z)(c+z),(c+z)(a+z),(a+z)(b+z))|=(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)dot

If (x+a) (x+b) (x+c) =x^(3) +14x^(2) +59x + 70 , find the value of (i) a+b+c (ii) (1)/(a) +(1)/(b) +(1)/(C ) ( iii) a^(2) +b^(2) +c^(2) (iv) (a)/(bc) +(b)/( ac) +(c )/( ab)