Home
Class 11
MATHS
solve : "log"(8)x + "log"(4)x + "log"(2)...

solve : `"log"_(8)x + "log"_(4)x + "log"_(2)x = 11`.

Text Solution

Verified by Experts

The correct Answer is:
64
Promotional Banner

Topper's Solved these Questions

  • BASIC ALGEBRA

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 2.13|20 Videos
  • BASIC ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE I(. Answer the following questions|25 Videos
  • BASIC ALGEBRA

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 2.11|11 Videos
  • BINOMIAL THEOREMN,SEQUENCES AND SERIES

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE(Choose the correct option for the following)|31 Videos

Similar Questions

Explore conceptually related problems

solve : "log"_(4) 2^(8x) = 2^("log"_(2)^(8))

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve: "log"_(2) x - 3 " log_((1)/(2)) x = 6

Solve 2 log_(3) x - 4 log_(x) 27 le 5 .

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

Solve : 3log_x(4)+ 2log_(4x)4+3log_(16x)4=0

Solve log_(16)x+log_(4)x+log_(2)x=7

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..