Home
Class 11
MATHS
Show that sin^-1 x+cos^-1 x=pi/2....

Show that `sin^-1 x+cos^-1 x=pi/2`.

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PREMIERS PUBLISHERS|Exercise CHOOSE THE CORRECT ANSWER|62 Videos
  • TRIGONOMETRY

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 3.11|6 Videos
  • SETS,RELATIONS AND FUNCATIONS

    PREMIERS PUBLISHERS|Exercise II. Choose the correct option for the following. (M.C.Q)|35 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    PREMIERS PUBLISHERS|Exercise PROBLEM FOR PRACTICE (CHOOSE THE CORRECT OPTION)|28 Videos

Similar Questions

Explore conceptually related problems

Show that sin − 1 x + cos − 1 x = π 2 .1/2sin^2x<((pi-1))/2,AAx in (0,pi/2)dot

If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1] rarr [0, pi] be two bijective functions, respectively inverse of bijective functions sin : [(pi)/(2), (3pi)/(2)] rarr [-1, 10 and cos : [0, pi] rarr [-1, 1] " then " sin^(-1) x + cos^(-1) x is

Show that (sin 8x cos x - sin 6x cos 3x)/(cos 2x cos x - sin 3x sin 4x) = tan 2x

Show that sin ( 40 ^@ +x ) cos ( 10^@ +x ) - cos ( 40 ^@ +x ) sin (10 ^@ +x )=1/2

show that 2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))

The number of real solution of the equation sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i)) = (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i)) lying in the interval (-(1)/(2), (1)/(2)) is ______. (Here, the inverse trigonometric function sin^(-1) x and cos^(-1) x assume values in [-(pi)/(2), (pi)/(2)] and [0, pi] respectively)

Show That 2(sin^6x+cos^6x)-3(sin^4x+cos^4x)+1=0

Show that : tan (cos^(-1)x) = (sqrt(1-x^(2)))/x

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2