Home
Class 11
MATHS
Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+a...

Prove that `|(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2))|=4a^(2)b^(2)c^(2).`

Text Solution

Verified by Experts

The correct Answer is:
`=4a^(2)b^(2)c^(2)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 7.3|6 Videos
  • MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 7.4|9 Videos
  • MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 7.1|33 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the correct option for the following)|39 Videos
  • SETS,RELATIONS AND FUNCATIONS

    PREMIERS PUBLISHERS|Exercise II. Choose the correct option for the following. (M.C.Q)|35 Videos

Similar Questions

Explore conceptually related problems

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Prove that |(a,b),(c,d)|^(2)=|(a^(2)+c^(2),ab+cd),(ab+cd,b^(2)+d^(2))|

Show that |(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2))|=0 .

Prove that |(1/a^(2),bc,b+c),(1/b^(2),ca,c+a),(1/c^(2), ab, a+b)|=0

Using the property of determinants and without expanding {:[( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) ]:} =4a^(2) b^(2) c^(2)

Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0 .

Show that |{:(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2)):}| = 0

Show that |{:(bc-a^(2),,ca-b^(2),,ab-c^(2)),(ca-b^(2),,ab-c^(2),,bc-a^(2)),(ab-c^(2),,bc-a^(2),,ca-b^(2)):}| |{:(a^(2),,c^(2),,2ca-b^(2)),(2ab-c^(2),,b^(2),,a^(2)),(b^(2),,2ac-a^(2),,c^(2)):}|.

By using properties of determinants , show that : {:[( a^(2) + 1, ab,ac),(ab,b^(2) + 1,bc),( ca, cb, c^(2) +1) ]:}= 1+a^(2) +b^(2) +c^(2)

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

PREMIERS PUBLISHERS-MATRICES AND DETERMINANTS-SOLUTION TO EXERCISE 7.2
  1. Without expanding the determinant , prove that |(s,a^(2),b^(2)+c^(2)...

    Text Solution

    |

  2. Show that |(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2))...

    Text Solution

    |

  3. Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)...

    Text Solution

    |

  4. Prove that |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=abc(1+(1)/(a)+(1)/(b)+(1)...

    Text Solution

    |

  5. Prove that |(sec^(2)theta,tan^(2)theta,1),(tan^(2)theta,sec^(2)theta,-...

    Text Solution

    |

  6. Show that |(x+2a,y+2b,z+2c),(x,y,z),(a,b,c)|=0.

    Text Solution

    |

  7. Write the general form of a 3xx3 skew -symmetric matrix and prove that...

    Text Solution

    |

  8. If |(a,b,aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c,0)|=0, prove that...

    Text Solution

    |

  9. Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0.

    Text Solution

    |

  10. If a,b,c are p^(pt),q^(th) and r^(th) terms of an A.P., find the value...

    Text Solution

    |

  11. Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))...

    Text Solution

    |

  12. Find the value of |(1,log(x) y,log(x) z),(log(y) x,1,log(y) z),(log(z)...

    Text Solution

    |

  13. If A=[(1/2,alpha),(0,1/2)]prove that sum^(n)(k=1) =1/3(1-1/4^(n))

    Text Solution

    |

  14. Without expanding, evaluate the determinants : |(2,3,4),(5,6,8),(6x...

    Text Solution

    |

  15. Without expanding evaluate the folleing determinents (ii)|(x+y,y+z,z+x...

    Text Solution

    |

  16. If A is a square matrix and |A|=2, find the value of |"AA"|^(T) .

    Text Solution

    |

  17. If A and B are square matrices of order 3 such that |A| = -1 and |B| =...

    Text Solution

    |

  18. If lambda = -2, determine the value of |(0,2lambda,1),(lambda^(2),0,3l...

    Text Solution

    |

  19. Determine the roots of the equation |(1,4,20),(1,-2,5),(1,2x,5x^(2))|=...

    Text Solution

    |

  20. Verify that det (AB) = (det A) (det B) for A=[(4,3,-2),(1,0,7),(2,3...

    Text Solution

    |