Home
Class 11
MATHS
Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)...

Show that `|(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))|` is divisible by`x^(4)`

Text Solution

Verified by Experts

The correct Answer is:
`Delta` is divisible by `x^(4)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 7.3|6 Videos
  • MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 7.4|9 Videos
  • MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 7.1|33 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the correct option for the following)|39 Videos
  • SETS,RELATIONS AND FUNCATIONS

    PREMIERS PUBLISHERS|Exercise II. Choose the correct option for the following. (M.C.Q)|35 Videos

Similar Questions

Explore conceptually related problems

Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))| is divisible by x^(2) .

Show that |(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2))|=0 .

Show that |{:(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2)):}| = 0

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

Show that |((a+b)^(2),(a-b)^(2),ab),((b+c)^(2),(b-c)^(2),bc),((c+a)^(2),(c-a)^(2),ca)|

By using properties of determinants , show that : {:[( a^(2) + 1, ab,ac),(ab,b^(2) + 1,bc),( ca, cb, c^(2) +1) ]:}= 1+a^(2) +b^(2) +c^(2)

Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0 .

Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(ac,,bc,,c^(2)+x):}| Which of the following is true ?

Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(ac,,bc,,c^(2)+x):}| which of the following is true ?

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

PREMIERS PUBLISHERS-MATRICES AND DETERMINANTS-SOLUTION TO EXERCISE 7.2
  1. Show that |(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2))...

    Text Solution

    |

  2. Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)...

    Text Solution

    |

  3. Prove that |(1+a,1,1),(1,1+b,1),(1,1,1+c)|=abc(1+(1)/(a)+(1)/(b)+(1)...

    Text Solution

    |

  4. Prove that |(sec^(2)theta,tan^(2)theta,1),(tan^(2)theta,sec^(2)theta,-...

    Text Solution

    |

  5. Show that |(x+2a,y+2b,z+2c),(x,y,z),(a,b,c)|=0.

    Text Solution

    |

  6. Write the general form of a 3xx3 skew -symmetric matrix and prove that...

    Text Solution

    |

  7. If |(a,b,aalpha+b),(b,c,balpha+c),(aalpha+b,balpha+c,0)|=0, prove that...

    Text Solution

    |

  8. Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0.

    Text Solution

    |

  9. If a,b,c are p^(pt),q^(th) and r^(th) terms of an A.P., find the value...

    Text Solution

    |

  10. Show that |(a^(2)+x^(2),ab,ac),(ab,b^(2)+x^(2),bc),(ac,bc,c^(2)+x^(2))...

    Text Solution

    |

  11. Find the value of |(1,log(x) y,log(x) z),(log(y) x,1,log(y) z),(log(z)...

    Text Solution

    |

  12. If A=[(1/2,alpha),(0,1/2)]prove that sum^(n)(k=1) =1/3(1-1/4^(n))

    Text Solution

    |

  13. Without expanding, evaluate the determinants : |(2,3,4),(5,6,8),(6x...

    Text Solution

    |

  14. Without expanding evaluate the folleing determinents (ii)|(x+y,y+z,z+x...

    Text Solution

    |

  15. If A is a square matrix and |A|=2, find the value of |"AA"|^(T) .

    Text Solution

    |

  16. If A and B are square matrices of order 3 such that |A| = -1 and |B| =...

    Text Solution

    |

  17. If lambda = -2, determine the value of |(0,2lambda,1),(lambda^(2),0,3l...

    Text Solution

    |

  18. Determine the roots of the equation |(1,4,20),(1,-2,5),(1,2x,5x^(2))|=...

    Text Solution

    |

  19. Verify that det (AB) = (det A) (det B) for A=[(4,3,-2),(1,0,7),(2,3...

    Text Solution

    |

  20. Using cofactors of elements of second row, evaluate |A|, where A = [(5...

    Text Solution

    |