Home
Class 11
MATHS
If A=(a(ij))(2xx3),B=(b(ij))(2xx3)then t...

If `A=(a_(ij))_(2xx3),B=(b_(ij))_(2xx3)`then the order of AB will be

A

`2xx3`

B

`3xx3`

C

not defined

D

`2xx2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (ANSWER THE FOLLOWING QUESTIONS)|18 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the correct option for the following)|39 Videos
  • SETS,RELATIONS AND FUNCATIONS

    PREMIERS PUBLISHERS|Exercise II. Choose the correct option for the following. (M.C.Q)|35 Videos

Similar Questions

Explore conceptually related problems

If a_(ij)=i^(2)-j and A=(a_(ij))_(2xx2) is:

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Let A=[a_("ij")]_(3xx3), B=[b_("ij")]_(3xx3) and C=[c_("ij")]_(3xx3) be any three matrices, where b_("ij")=3^(i-j) a_("ij") and c_("ij")=4^(i-j) b_("ij") . If det. A=2 , then det. (BC) is equal to _______ .

If A=(a_(ij))_(2xx2) .Where a_(ij) is given by (i-2j)^(2) then A is:

Let A= |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3)c_(3))| then the cofactor of a_(31) is:

If a_(ij)=(1)/(2) (3i-2j) and A = [a_(ij)]_(2xx2) is

Let A=[a_("ij")]_(3xx3) be a matrix such that A A^(T)=4I and a_("ij")+2c_("ij")=0 , where C_("ij") is the cofactor of a_("ij") and I is the unit matrix of order 3. |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then the value of lambda is

Construct the matrix A = [a_(ij)]_(3xx3), where a_(ij)=i-j . State whether A is symmetric or skew- symmetric.