Home
Class 11
MATHS
If aplha, beta, gamma are the directiona...

If `aplha, beta, gamma` are the directional angles of a vector then `sin^(2)aplha + sin^(2) beta+sin^(2) gamma`.

A

2

B

-2

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Vector Algebra -I

    PREMIERS PUBLISHERS|Exercise Solution to Exercise(8.5)|25 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    PREMIERS PUBLISHERS|Exercise PROBLEM FOR PRACTICE (CHOOSE THE CORRECT OPTION)|28 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the direction angles of a line (i)Show that sin^2 alpha + sin^2 beta +sin^2 gamma=2 . (ii)Find the value of cos2alpha +cos2beta+cos2gamma .

Let alpha, beta, gamma be the measures of angle such that sin alpha+sin beta+sin gamma ge 2 . Then the possible value of cos alpha + cos beta+cos gamma is

Knowledge Check

  • Let vecr=xveci+yvecj+zveck be the position vector of any point and let alpha,beta,gamma be the direction angle of vecr then sin^(2)alpha+sin^(2)beta+sin^(2)gamma is:

    A
    -2
    B
    0
    C
    2
    D
    1
  • IF alpha , beta and gamma are angles such that tan alpha + tan beta + tan gamma = tan alpha tan beta tan gamma and x= cos alpha + i sin alpha , y = cos beta + i sin beta and z= cos gamma + i sin gamma , then xyz =

    A
    1, but not -1
    B
    `-1 ` but not 1
    C
    `+1` or -1
    D
    `0`
  • Similar Questions

    Explore conceptually related problems

    If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

    If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

    If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

    If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0 cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0 sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled "" d. acute angled

    alpha, beta, gamma are real number satisfying alpha+beta+gamma=pi . The minimum value of the given expression sin alpha+sin beta+sin gamma is

    Consider the vectors hat i+cos(beta-alpha) hat j+cos(gamma-alpha) hat k ,cos(alpha-beta) hat i+ hat j+"cos"(gamma-beta) hat ka n dcos(alpha-gamma) hat i+cos(beta-gamma) hat k+a hat k where alpha,beta , and gamma are different angles. If these vectors are coplanar, show that a is independent of alpha,beta and gamma