Home
Class 11
MATHS
Find lim(xrarr0)(xe^x -sin2x)/(2x)...

Find `lim_(xrarr0)(xe^x -sin2x)/(2x)`

A

1

B

0

C

`1/2`

D

`-1/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS LIMITS AND CONTINUITY

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 9.6|25 Videos
  • DIFFEREMTIAL CALCULUS DIFFERENTIABILITY AND METHODS OF DIFFERENTITAION

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE|73 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    PREMIERS PUBLISHERS|Exercise PART -IV|4 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(xe^x -sin2x)/x is :

(i) lim_(xrarr0)(2xe^x -sin2x)/x is zero. (ii) lim_(nrarrinfty)(1^2 +2^2 +…n^2)/(n^3) is 2/6 (iii) lim_(xrarr1)(x^7 -1)/(x-1) =6 (iv) lim_(thetararr0)(sin2theta)/(3theta)=3/2 State which pair of statements given above are correct.

Find lim_(xrarr0)[(x^3 +x^2)/(2x^2) +3x^2 -4]

Find lim_(xrarr0)[log(1+x) -x]/x

Evaluate the following limits in lim_(xrarr0)(ax+x cosx)/(b sinx)

lim_(xto0)(xe^(x)-sinx)/x is

Find lim_(xrarr0) (sqrt(cos2x+1))/(x)= __________

Evaluate : lim_(xrarr0)(sin4x)/(sin2x)

Evaluate the following limits in lim_(xrarr0)(cosx)/(pi-x)