Home
Class 11
MATHS
lim(xrarr2^-)2floorx is :...

`lim_(xrarr2^-)2floorx` is :

A

2

B

`-4`

C

0

D

4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS LIMITS AND CONTINUITY

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 9.6|25 Videos
  • DIFFEREMTIAL CALCULUS DIFFERENTIABILITY AND METHODS OF DIFFERENTITAION

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE|73 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    PREMIERS PUBLISHERS|Exercise PART -IV|4 Videos

Similar Questions

Explore conceptually related problems

If f:RrarrR is defined by f(x)=|x-2|+|x+2| for x epsilon R ,then lim_(xrarr2^-)f(x) is :

Evaluate lim_(xrarr3^+)floorx and lim_(xrarr3^-)(floorx) .

Sketch the graph of an example of a rational function f that satisfies all the given conditions. (i) f(0)=0,f(1), lim_(xrarroo) f(x)=0,f " is odd" (ii) lim_(xrarr0^(+)) f(x)=oo,lim_(xrarr0^(-)) f(x)=-oo,lim_(xrarroo) f(x)=1,lim_(xrarr-oo) f(x)=1 (iii) lim_(xrarr-2) f(x)=oo, lim_(xrarr-oo) f(x)=3,lim_(xrarroo) f(x) = 3 , f(0)=0

If f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0):} , (n in I) , then (a) lim_(xrarr0)f(x) exists for n >1 (b) lim_(xrarr0)f(x) exists for n<0 (c) lim_(xrarr0)f(x) does not exist for any value of n (d) lim_(xrarr0)f(x) cannot be determined

Complete the table using calculator and use the result to estimate the limit. 1 lim_(xrarr2)(x-2)/(x^2 -x -2)

Use the graph to find the limits (if it exists).If the limit does not exist ,explain why? lim_(xrarr2)f(x) . where f(x)={(4-x,xne2),(0,x=2):}

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

Calculate (ii) lim_(xrarr -2 )(-3x^2 ) .

Complete the table using calculator and use the result to estimate the limit. lim_(xrarr2)(x-2)/(x^2 -4)