Home
Class 11
MATHS
tan^(-1)((8x)/(1 - 16x^(2)))...

` tan^(-1)((8x)/(1 - 16x^(2)))`

Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 11.8|6 Videos
  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 11.9|6 Videos
  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 11.6|15 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    PREMIERS PUBLISHERS|Exercise PART -IV|4 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the correct option for the following)|39 Videos

Similar Questions

Explore conceptually related problems

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

The value of int_(-4)^(4) [ tan^(-1)((x^(2))/( x^(4)+1)) +tan^(-1) ((x^(4)+1)/( x^(2))) ] dx is

Differentiate tan^(-1)(x/(1+sqrt((1-x^2)))) +{2tan^(-1)sqrt(((1-x)/(1+x)))}sinwdotrdottdotxdot

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)