Home
Class 11
MATHS
if int (3^((1)/(x)))/(x^(2)) dx = k (3^...

if `int (3^((1)/(x)))/(x^(2)) dx = k (3^((1)/(x))) + c `, then the value of k is

A

log3

B

`-log3`

C

`-(1)/(log3)`

D

`(1)/(log3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise PROBLEM FOR PRACTICE|33 Videos
  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise PROBLEM FOR PRACTICE (MCQ)|42 Videos
  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 11.12|6 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    PREMIERS PUBLISHERS|Exercise PART -IV|4 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the correct option for the following)|39 Videos

Similar Questions

Explore conceptually related problems

int (x^3-1)/((x^4+1)(x+1)) dx is

Evaluate int (1)/(x^((1)/(2)) + x^((1)/(3)))dx

Knowledge Check

  • If int(m^((1)/(x)))/(x^(2))dx=k(m^((1)/(x)))+c then k is:

    A
    `logm`
    B
    `log((1)/(m))`
    C
    `(-1)/(logm)`
    D
    `(1)/(logm)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int(3tan^(-1)x)/(1+x^2)dx

    Evaluate int(3x-1)/((x-2)^(2))dx

    Let k(x) = ((x^(2)+1))/(root(3)(x^(3)+3x+6) dx and k(-1) = 1/root (3)(2)) then the value of k(-2) is

    Prove that int_(0)^(1)log((x)/(x-1))dx=int_(0)^(1)log((x-1)/(x))dx . Find the value of int_(0)^(1)log((x)/(x-1))dx

    "Let " k(x)=int((x^(2)+1)dx)/(root(3)(x^(3)+3x+6)) " and " k(-1)=(1)/(root(3)(2)). " Then the value of " k(-2) " is "-.

    Let k(x)=int((x^2+1)dx)/((x^3+3x+6)^(1/3))a n dk(-1)=1/(2^(1/3)) . Then the value of k(-2) is____

    "If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.