Home
Class 11
MATHS
int((e^(x)+cosx))/(e^(x)+sinx+2)dx :...

`int((e^(x)+cosx))/(e^(x)+sinx+2)dx` :

A

`log|e^(x)+sinx+2|+c`

B

`log|e^(x)+cosx|+c`

C

`log|e^(x)-sinx+2|+c`

D

`log|e^(x)+cosx-1|+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise PROBLEM FOR PRACTICE|33 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    PREMIERS PUBLISHERS|Exercise PART -IV|4 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the correct option for the following)|39 Videos

Similar Questions

Explore conceptually related problems

int(e^(x)+1)/(e^(x))dx :

Evaluate int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx .

Ecaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

int(e^(x)(1+x))/(sin^(2)(xe^(x)))dx

int(e^(x))/(e^(x)+1)dx= ……………

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx

Evaluate: int(e^(3x)+e^(5x))/(e^x+e^(-x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these