Home
Class 11
MATHS
int(e^(tan^(-1)x))/(1+x^(2))dx :...

`int(e^(tan^(-1)x))/(1+x^(2))dx` :

A

`e^(tan^(-1))x+c`

B

`(1)/((1+x^(2))^(2))+c`

C

`e^(tan^(-1)x)^(2)+c`

D

`tan^(-1)x*e^(tan^(-1)x)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise PROBLEM FOR PRACTICE|33 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    PREMIERS PUBLISHERS|Exercise PART -IV|4 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the correct option for the following)|39 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

Evaluate int(3tan^(-1)x)/(1+x^2)dx

Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))dx (ii) int((x^(2)+1)e^(x))/((x+1)^(2))dx

Evaluate the Integral: inte^(x)(tan^(-1)x+(1)/(1+x^(2)))dx .

Evaluate int"tan"^(-1)((2x)/(1-x^(2)))dx

Evaluate: int(x^2tan^(-1)x^3)/(1+x^6)dx

Evaluate: int_(0)^1tan^(-1)x/(1+x^2) dx

Evaluate the following : int_(0)^(1) ( sin ( 3 tan^(-1)x) tan^(-1)x)/( 1+x^(2)) dx

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is