Home
Class 11
MATHS
If int(m^((1)/(x)))/(x^(2))dx=k(m^((1)/(...

If `int(m^((1)/(x)))/(x^(2))dx=k(m^((1)/(x)))+c` then k is:

A

`logm`

B

`log((1)/(m))`

C

`(-1)/(logm)`

D

`(1)/(logm)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    PREMIERS PUBLISHERS|Exercise PROBLEM FOR PRACTICE|33 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    PREMIERS PUBLISHERS|Exercise PART -IV|4 Videos
  • INTRODUCTION TO PROBABILITY THEORY

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Choose the correct option for the following)|39 Videos

Similar Questions

Explore conceptually related problems

if int (3^((1)/(x)))/(x^(2)) dx = k (3^((1)/(x))) + c , then the value of k is

If int (3^(1/x))/(x^2) dx = k (3^(1/x)) + c , then the value of k is …………. .

If int f'(x) e^(x^(2))dx = (x-1)e^(x^(2))+c then f (x) is . . . . .

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int f' (x) e^(x^(2)) dx = (x-1)e^(x^(2)) + c , then f (x) is

Evaluate int (1)/(x^((1)/(2)) + x^((1)/(3)))dx