Home
Class 12
MATHS
If A=[[a(11),a(12)],[a(21),a(22)]] is no...

If `A=[[a_(11),a_(12)],[a_(21),a_(22)]]` is non - singular, find `A^(-1)`.

Text Solution

Verified by Experts

The correct Answer is:
`=(1)/((a_(11)a_(12)-a_(12)a_(22)))[[a_(22),-a_(12)],[-a_(21),a_(11)]]`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.1|19 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.2|11 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise Answer the following questions.|18 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos

Similar Questions

Explore conceptually related problems

Let A be the 2 xx 2 matrix given by A=[a_("ij")] where a_("ij") in {0, 1, 2, 3, 4} such theta a_(11)+a_(12)+a_(21)+a_(22)=4 then which of the following statement(s) is/are true ?

If a_(1)=1, a_(2)=1 and a_(n)=2a_(n-1)+a_(n-2), nge3, ninN , then find the first six terms of the sequence.

If a_(1), a_(2), a_(3), …..a_(n) is an arithmetic progression with common difference d. Prove that tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+…+tan^(-1)((d)/(1+a_(n)a_(n-1)))]=(a_(n)-a_(1))/(1+a_(1)a_(n))

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))

if a_(1),a_(2),a+_(3)……,a_(12) are in A.P and Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(3)= |{:(a_(2)b_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(3)a_(12),,a_(4),,a_(5)):}| then Delta_(2):Delta_(2)= "_____"

If a_(1), a_(2), a_(3), ……. , a_(n) are in A.P. and a_(1) = 0 , then the value of (a_(3)/a_(2) + a_(4)/a_(3) + .... + a_(n)/a_(n - 1)) - a_(2)(1/a_(2) + 1/a_(3) + .... + 1/a_(n - 2)) is equal to

If A = [{:(3," "1,-1),(2,-2," "0),(1," "2,-1):}] "and"" "A^(-1)=[(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33))] then the value of a_(23) is

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to

Let a_(1),a_(2),a_(3),….,a_(4001) is an A.P. such that (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+...+(1)/(a_(4000)a_(4001))=10 a_(2)+a_(400)=50 . Then |a_(1)-a_(4001)| is equal to