Home
Class 12
MATHS
If adj A=[[4,-2,-3],[-3,2,2],[-2,1,2]], ...

If adj `A=[[4,-2,-3],[-3,2,2],[-2,1,2]]`, find `A^(-1)`.

Text Solution

Verified by Experts

The correct Answer is:
`=pm[[4,-2,-3],[-3,2,2],[-2,1,2]]`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.1|19 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.2|11 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise Answer the following questions.|18 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos

Similar Questions

Explore conceptually related problems

If adj A = [[-1,2,2],[1,1,2],[2,2,1]] , find A^(-1) .

If adj A=[[2,1],[3,-1]] , adj B=[[2,3],[-1,2]] then adj (AB) is :

Show that A=A^(-1) if A[[-1,2,-2],[4,-3,4],[4,-4,5]] Hence find A^(2) .

If A= [(2,3),(-1,2)] find A^(4) .

If adj A=[[2,3],[4,1]] and adj B=[[1,-2],[-3,1]] then adj (AB) is :

If A=[[1,1,2],[1,2,2],[2,2,1]] verify that A(adj A) = (adj A)A = |A|I_(3) .

If A=[[1,2,1],[1,1,2],[2,2,1]] verify A(adj A)=(adj A)A=|A|I_(3) .

Let A=[[-1, -2 , -2],[ 2, 1, -2], [2, -2, 1]] If adj. A=k A^T theri the value of 'K' is