Home
Class 12
MATHS
If A=[[3,5],[2,1]] Show that (A^(T))^(-1...

If `A=[[3,5],[2,1]]` Show that `(A^(T))^(-1)=(A^(-1))^(T)`.

Text Solution

Verified by Experts

The correct Answer is:
`(A^(T))^(-1)=(A^(T))^(T)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.1|19 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.2|11 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise Answer the following questions.|18 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos

Similar Questions

Explore conceptually related problems

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] show that (A-B)^(T)=A^(T)-B^(T)

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] , show that (A-B)^(T)=A^(T)-B^(T) .

If A=[[3,1],[2,5]]B=[[1,2],[2,3]] verify (AB)^(T)=B^(T)A^(T) .

Verify the property (A^(T))^(-1)=(A^(-1))^(T) with A=[{:(2,9),(1,7):}]

If A=[[(4)/(5),(3)/(5)],[x,(4)/(5)]] and A^(T)=A^(-1) then x is :

If A=((1,2,1),(2,-1,1)) and B=((2,-1),(-1,4),(0,2)) show that (AB)^(T)=B^(T)A^(T)

If A= [(2,1,2),(4,2,-3),(0,5,1)] ,B= [(-2,1,0),(2,1,-1),(1,0,1)] .Prove that (AB)^(T)=B^(T)A^(T)

If A=[(5, 2, 9), (1, 2, 8)], B=[(1, 7), (1, 2), (5, -1)] verify that (AB)^(T)=B^(T)A^(T) .

If A is a non singular matrix such that A^(-1)=[[7,-2],[-3,1]] then (A^(T))^(-1) is :

If A^(T)=[(4,5),(-1,0),(2,3)]and B=[(2,-1,1),(7,5,-2)] , verify the (A-B)^(T)=A^(T)-B^(T)