Home
Class 12
MATHS
If A=[[1,2],[3,4]],B=[[1,2],[2,1]]. Show...

If `A=[[1,2],[3,4]],B=[[1,2],[2,1]]`. Show that `(AB)^(-1)=B^(-1)A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`(AB)^(-1)=B^(-1)A^(-1)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.1|19 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.2|11 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise Answer the following questions.|18 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos

Similar Questions

Explore conceptually related problems

If A=[[3,1],[2,5]]B=[[1,2],[2,3]] verify (AB)^(-1)=B^(-1)A^(-1)

If A=[[3,1],[2,5]]B=[[1,2],[2,3]] verify (AB)^(T)=B^(T)A^(T) .

If A=[{:(3,2),(7,5)],andB=[(-1,-3),(5,2):}] verify that (AB)^(-1)=B^(-1)A^(-1) .

If A=[[3,1],[2,5]]B=[[1,2],[2,3]] verify adj (AB) = (adj B) (adj A)

If A=[[4,0],[1,2]] and B=[[1,3],[2,0]] then |adj AB| is :

If A= {:[( 2,3),( 1,-4) ]:}and B = {:[( 1,-2),( -1,3) ]:} ,then verify that (AB)^(-1) =B^(-1) A^(-1)

If adj A=[[2,3],[4,1]] and adj B=[[1,-2],[-3,1]] then adj (AB) is :

If adj A=[[2,1],[3,-1]] , adj B=[[2,3],[-1,2]] then adj (AB) is :

If A=[(5, 2, 9), (1, 2, 8)], B=[(1, 7), (1, 2), (5, -1)] verify that (AB)^(T)=B^(T)A^(T) .

If A = [{:(3,2),(7,5):}] "and B" = [{:(-1,-3),(5,2):}] "verify that" (AB)^(-1)=B^(-1)A^(-1).