Home
Class 12
MATHS
A=[[1, tan x],[-tan x,1]], show that A^(...

`A=[[1, tan x],[-tan x,1]]`, show that `A^(T)A^(-1)=[[cos 2x,-sin 2x],[sin 2x,cos 2x]]`.

Text Solution

Verified by Experts

The correct Answer is:
`=[[cos 2x,-sin 2x],[sin 2x,cos 2x]]`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.2|11 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.3|8 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (II. Answer the following)|15 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise Answer the following questions.|18 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos

Similar Questions

Explore conceptually related problems

A=[{:(1 ,tanx),(-tanx," "1):}] "show that"" "A^(T)A^(-1)=[{:(cos2x,-sin2x),(sin2x,cos2x):}].

Let f(x)=|[1+sin ^2 x, cos ^2 x , 4 sin 2 x],[ sin ^2 x ,1+cos ^2 x , 4 sin 2 x],[ sin ^2 x , cos ^2 x , 1+4 sin 2 x]| , the maximum value of f(x) is

Show that sin^-1 x+cos^-1 x=pi/2 .

tan^-1[(cos x)/(1+sin x)] is equal to

Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x )

(sin^(2) x)/(1 + cos x)

show that 2^(sin x)+2^(cos x)ge2^(1-(1)/sqrt(2))

Prove that (sin 4x + sin 2x)/(cos 4x + cos 2x) = tan 3x .

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .

Solve sin x-3 sin 2x+sin 3x=cos x-3 cos 2x+cos 3x

PREMIERS PUBLISHERS-APPLICATIONS OF MATRICES AND DETERMINANTS -SOLUTION TO EXERCISE 1.1
  1. Find the adjoint of the following : [{:(-3,4),(6,2):}]

    Text Solution

    |

  2. Find the adjoint of the following : [[2,3,1],[3,4,1],[3,7,2]]

    Text Solution

    |

  3. Find the adjoint of the following : (1)/(3)[{:(2,2,1),(-2,1,2),(1,-2...

    Text Solution

    |

  4. Find the inverse (if it exists) of the following [{:(-2," "4),(1,-3)...

    Text Solution

    |

  5. Find the inverse (if it exists) of the following [{:(5,1,1),(1,5,1),...

    Text Solution

    |

  6. Find the inverse (if it exists) of the following [{:(2,3,1),(3,4,1),...

    Text Solution

    |

  7. If F(alpha)=[[cos alpha,0,sin alpha],[0,1,0],[-sin alpha,0,cos alpha]]...

    Text Solution

    |

  8. If A=[[5,3],[-1,-2]], show that A^(2)-3A-7I(2)=O(2) Hence find A^(-1).

    Text Solution

    |

  9. If A=(1)/(9)[{:(-8,1,4),(4,4,7),(1,-8,4):}],"prove that"" "A^(-1)=A^(T...

    Text Solution

    |

  10. If A=[{:(8,-4),(-5," "3):}], verify that A(adj A)= (adj A) A= |A|I(2).

    Text Solution

    |

  11. If A = [{:(3,2),(7,5):}] "and B" = [{:(-1,-3),(5,2):}] "verify that" (...

    Text Solution

    |

  12. If adj (A) = [{:(2,-4,2),(-3," "12,-7),(-2," "0,2):}], find A.

    Text Solution

    |

  13. If adj (A) = [{:(0,-2,0),(6,2,-6),(-3,0,6):}] "find" " "A^(-1).

    Text Solution

    |

  14. Find adj (adj(A)) if adj A = [{:(1,0,1),(0,2,0),(-1,0,1):}].

    Text Solution

    |

  15. A=[[1, tan x],[-tan x,1]], show that A^(T)A^(-1)=[[cos 2x,-sin 2x],[si...

    Text Solution

    |

  16. Find the matrix A for which A[{:(5,3),(-1,-2):}]= [(14,7),(7,7)].

    Text Solution

    |

  17. Given A = A=[{:(1,-1),(2,0):}],B= [(3,-2),(1,1)] "and" " "C= [{:(1,1),...

    Text Solution

    |

  18. If A= [{:(0,1,1),(1,0,1),(1,1,0):}], "show that" A^(-1)=(1)/(2)(A^(2)-...

    Text Solution

    |

  19. Decrypt the received encoded message [2,-3][20,4] with the encryption ...

    Text Solution

    |