Home
Class 12
MATHS
If A=[[2,3],[3,5]] and A(adj A) =[[k,0],...

If `A=[[2,3],[3,5]]` and A(adj A) `=[[k,0],[0,k]]` then k is :

A

10

B

3

C

`-1`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (II. Answer the following)|15 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.8|25 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise Answer the following questions.|18 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos

Similar Questions

Explore conceptually related problems

A=[(costheta,sintheta),(-sintheta,costheta)] and A (adj A) = [(k,0),(0,k)] , then =k

The orthocenter of triangle whose vertices are A(a,0,0),B(0,b,0) and C(0,0,c) is (k/a,k/b,k/c) then k is equal to

Knowledge Check

  • If A=[[cos theta,sin theta],[-sin theta,cos theta]] and A(adj A)=[[k,0],[0,k]] , then k =

    A
    0
    B
    `sin theta`
    C
    `cos theta`
    D
    1
  • If A= [(cos theta, sin theta),(-sin theta, cos theta)] and A (adj A) = [(k,0),(0,k)] then k =

    A
    0
    B
    sin `theta`
    C
    cos `theta`
    D
    1
  • If A = [{:(costheta, sin theta),(-sin theta, cos theta):}] and A(adj A) = [{:(k,0),(0,k):}] , then k=……………

    A
    0
    B
    `sin theta`
    C
    `cos theta`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Let A=[[-1, -2 , -2],[ 2, 1, -2], [2, -2, 1]] If adj. A=k A^T theri the value of 'K' is

    Let K be a positive real number and A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-2k-2sqrt(k)2k-1]a n dB=[0 2k-1sqrt(k)1-2k0 2-sqrt(k)-2sqrt(k)0] . If det (a d jA)+det(a d jB)=10^6,t h e n[k] is equal to. [Note: a d jM denotes the adjoint of a square matix M and [k] denotes the largest integer less than or equal to K ].

    If A=[(3,-4),(1,-1)] prove that A^k=[(1+2k,-4k),(k,1-2k)] where k is any positive integer.

    If A=[(1,0,2),(0,2,1),(2,0,3)] and A^3 -6A^2 +7A+kI = O , find the value of k.

    If the points (k,2k) ,(3k,3k) and (3,1) are collinear, then k is ……….