Home
Class 12
MATHS
The inverse of A=[[cos theta, sin theta]...

The inverse of `A=[[cos theta, sin theta],[-sin theta,cos theta]]` is :

A

A

B

`-A`

C

`A^(T)`

D

`-A^(T)`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (II. Answer the following)|15 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 1.8|25 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise Answer the following questions.|18 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : |(cos theta, sin theta),(-sin theta,cos theta)|

By matrix multiplication from that M=[[cos theta,-sin theta],[sin theta,cos theta]] is orthogonal.

Knowledge Check

  • If A=[[cos theta,sin theta],[-sin theta,cos theta]] and A(adj A)=[[k,0],[0,k]] , then k =

    A
    0
    B
    `sin theta`
    C
    `cos theta`
    D
    1
  • If A=[{:(cos theta, sin theta),(-sin theta, cos theta):}] then "A A"^(T) is :

    A
    A
    B
    `A^(T)`
    C
    I
    D
    0
  • If A= [(cos theta, sin theta),(-sin theta, cos theta)] and A (adj A) = [(k,0),(0,k)] then k =

    A
    0
    B
    sin `theta`
    C
    cos `theta`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    determinant |"cos theta sin theta -sin theta cos theta

    Verify that |AB|=|A||B| if A = [(cos theta, - sin theta),(sin theta, cos theta)]and B = [(cos theta, sin theta),(-sintheta,cos theta)]

    y = tan theta ( sin theta + cos theta)

    Prove the orthogonal matrices of order two are of the form [(cos theta,-sin theta),(sin theta,cos theta)] or [(cos theta,sin theta),(sin theta,-cos theta)]

    The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta