Home
Class 12
MATHS
i^(1948)-i^(-1869)...

`i^(1948)-i^(-1869)`

Text Solution

Verified by Experts

The correct Answer is:
`1+i`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Solution to Exercise 2.2|9 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Solution to Exercise 2.3|5 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Problem for practice|45 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE|40 Videos

Similar Questions

Explore conceptually related problems

Express the complex number (i) i^(9)+i^(19) (ii) i^(-39) in the form a+ib .

Simplify the following : (i) i^7 " " (ii) i^(1729) " " (iii) i^(-1924) + i^(2018) " " (iv) sum_(n=1)^(102) i^(n) " " (v) i i^2 i^3 …..i^(40)

Simplify [(i^(4)+i^(9)+i^(16))/(3-2i^(5)-i^(10)-i^(15))]^(10)

The conjugate of i^(13) + i^(14) + i^(15) + i^(16) is …………

The value of (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(582)+i^(580)+i^(578)+i^(576)+i^(574))+1 is equal to

The value of i-i^(2)+i^(3)-i^(4)+"……."-i^(100) is equal to

Express the following in the standard form a + ib . (i^4 + i^9 + i^(16))/(3 - 2i^8 - i^(10) - i^(5))