Home
Class 12
MATHS
Find the rectangular form of the complex...

Find the rectangular form of the complex numbers.
`(cos" " (pi)/(6) - i sin" " (pi)/(6))/(2(cos" " (pi)/(3) + i sin" " (pi)/(3)))`

Text Solution

Verified by Experts

The correct Answer is:
`-(i)/(2)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Solution to Exercise 2.8|16 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Solution to Exercise 2.9|25 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Solution to Exercise 2.6|11 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE|40 Videos

Similar Questions

Explore conceptually related problems

Find the rectangular form of the complex numbers. (cos" " (pi)/(6) + i sin" " (pi)/(6)) (cos" " (pi)/(12) + i sin" " (pi)/(12))

Write in polar form of the complex numbers. ( i-1)/(cos" "(pi)/(3) + i sin " "(pi)/(3))

If z = cos (pi)/(4) + i sin (pi)/(6) , then

Find the value of ((1 + sin"" (pi)/(10) + i cos"" (pi)/(10))/(1 + sin"" (pi)/(10) - i cos"" (pi)/(10)))^(10) .

Find the principal argument of the complex number sin(6pi)/5+i(1+cos(6pi)/5)dot

2 sin ^(2) "" (pi)/(6) + cosec ^(2) "" (7pi)/(6) cos ^(2) "" (pi)/(3) = 3/2