Home
Class 12
MATHS
If (1 + z)/(1 - z) = cos 2theta + i sin ...

If `(1 + z)/(1 - z)` = cos `2theta + i sin 2theta`, show that z = i tan`theta`.

Text Solution

Verified by Experts

The correct Answer is:
`itantheta`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Solution to Exercise 2.8|16 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Solution to Exercise 2.9|25 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Solution to Exercise 2.6|11 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (Answer the following questions)|21 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE|40 Videos

Similar Questions

Explore conceptually related problems

If z = 1 - cos theta + i sin theta , then |z| =

If z = (1)/(1 - cos theta - i sin theta), the Re (z)=

If a = cos theta + i sin theta , then (1 + a)/(1 -a)

Prove: (cos theta)/(1+sin theta) = sec theta - tan theta

Simplify ((1 + cos 2 theta + i sin 2 theta)/(1 + cos 2 theta - i sin 2 theta))^(30)

if a=cos theta + i sin theta , b=cos 2 theta- i sin 2 theta , c= cos 3theta + i sin 3theta and if |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}| =0 then

Simplify : ((1+ cos theta - isin theta)/(1+cos theta + i sin theta))^5