Home
Class 12
MATHS
For any vector vec(a)," prove that "hat(...

For any vector `vec(a)," prove that "hat(i)xx(vec(a)xxvec(i))+hat(j)xx(vec(a)xxvec(j))+hat(k)xx(vec(a)xxhat(k))=2vec(a).`

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 6.4|11 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 6.5|7 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISE 6.2|10 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (II. Answer the following)|15 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Problem for practice|45 Videos

Similar Questions

Explore conceptually related problems

If vec(p)xxvec(q)=2hat(i)+3hat(j),vec(r)xxvec(s)=3hat(j)+2hat(k)," then "vec(p).(vec(q)xx(vec(r)xxvec(s))) is

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=3hat(i)+5hat(j)+2hat(k),vec(c)=-hat(i)-2hat(j)+3hat(k), (vec(a)xxvec(b))xxvec(c)=(vec(a)*vec(c))vec(b)-(vec(b)*vec(c))vec(a)

If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=2hat(i)-hat(j)+hat(k),vec(c)=3hat(i)+2hat(j)+hat(k)andvec(a)xx(vec(b)xxvec(c))=lvec(a)+mvec(b)+nvec(c) find the values fo l,m,n.

If vec(a)=hat(i)+hat(j)+hat(k),vec(b)=hat(i)+hat(j),vec(c)=hat(i)and(vec(a)xxvec(b))xxvec(c)=lambdavec(a)+muvec(b), then the value of lamda+mu is

If vec(a)=hat(i)-2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+2hat(j)+hat(k)," find (i) "(vec(a)xxvec(b))xxvec(c)" (ii) "vec(a)xx(vec(b)xxvec(c))

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=3hat(i)+5hat(j)+2hat(k),vec(c)=-hat(i)-2hat(j)+3hat(k), vec(a)(vec(a)xxvec(b))=(vec(a)*vec(c))vec(b)-(vec(a)*vec(b))vec(c)

vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=-hat(i)+2hat(j)-4hat(k),vec(c)=hat(i)+hat(j)+hat(k)" then find the of "(vec(a)xxvec(b))*(vec(a)xxvec(c)).

Prove that ( vec a(dot( vec bxx hat i))) hat i+( vec a(dot( vec bxx hat j))) hat j+( vec a(dot( vec bxx hat k))) hat k= vec axx vec bdot

If vec a is any vector, show that vec a = (vec a. hat i ) hat i + (vec a. hat j) hat j + (vec a. hat k) hat k .

If vec(a)=vec(i)+2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+hat(2j)+hat(k)," find "vec(a)*(vec(b)xxvec(c))