Home
Class 12
MATHS
A conical water tank with vertex down of...

A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    PREMIERS PUBLISHERS|Exercise Solution To Exercise 7.2|13 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    PREMIERS PUBLISHERS|Exercise Solution To Exercise 7.3|13 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    PREMIERS PUBLISHERS|Exercise Problems For Practice (Answer the following question)|39 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise Answer the following questions.|18 Videos

Similar Questions

Explore conceptually related problems

A water tank has the shape of an invertd circular cone with base radius 2 metres and height 4 metres. If water is being pumped into the tank at the rate of 2m^(3)//mm . Find the rate at which the water level is rising when the water is 3m deep

A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of

Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile with a circular base whose beight and diameter of base are alwayes equal . How fast is the height of the pile increasing when the pile is 10 metre high ?

Sand is pouring from a pipe at the rate of 12c m^3//sdot The falling sand forms a cone on the ground in such a way that the height of the cone is always 1/6th of the radius of the base. How fast does the height of the sand cone increase when the height in 4 cm?

A water tank has the shape of an inverted right circular cone with its axis vertical and vertex lowermost. Its semi-vertical angle is tan^(-1 (0.5). Water is poured into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of the water is rising at the instant when the depth of water in the tank is 4 m.

Find the time required for a cylindrical tank of radius 2.5 m and height 3 m to empty through a round hole of 2.5 cm with a velocity 2. 5sqrt(h) m/s, h being the depth of the water in the tank.

A 50 L tank initailly contains 10 L of fresh water, At t=0, a brine solution containing 1 lb of salt per gallon is poured into the tank at the rate of 4 L/min, while the well-stirred mixture leaves the tank at the rate of 2 L/min. Then the amount of time required for overflow to occur in

The area of cross section of a large tank is 0.5m^2 . It has an opening near the bottom having area of cross section 1cm^2 . A load of 20 kg is applied on the water at the top. Find the velocity of the water coming out of the opening at the time when the height of water level is 50 cm above the bottom. Take g=10ms^-2