Home
Class 12
MATHS
If w(x,y) =6x^(3) - 3xy + 2y^(2) , x =e^...

If w(x,y) `=6x^(3) - 3xy + 2y^(2) , x =e^(s), y= cos s in R`, find `(dw)/(ds)`, and evaluate at s=0.

Text Solution

Verified by Experts

The correct Answer is:
`=18 e ^(2s) - 3e ^(x) cos s + 3e ^(x) sin s -4 sin s cos s`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.7|9 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.8|15 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.5|5 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Problem for practice|45 Videos
  • DISCRETE MATHEMATICS

    PREMIERS PUBLISHERS|Exercise Problems For Practice|30 Videos

Similar Questions

Explore conceptually related problems

If u(x,y) =x^(2)y + 3xy^(4), x = e^(t) and y= sin t, find (du)/(dx) and evaluate it at t=0.

Let z(x,y) =x^(3) - 3x^(2)y^(3) , where x = se^(t), y =se^(-t), s, t in R . Find (del z)/(del s) and (del z)/(del t)

If w(x,y,z) =x^(2) + y^(2)+ z^(2), x=e^(t), y=e^(t) sin t and z=e^(t) cos t , find (dw)/(dt) .

If z(x,y) =x tan^(-1)(xy), x=t^(2), y=se^(t), s, t in R , Find (del z)/(del s) and (del z)/(del t) at s=t=1.

If w(x,y) = x^(3) - 3xy + 2y^(2), x , y in R , find the linear approximation for w at (1,-1).