Home
Class 12
MATHS
Let z(x,y) =x^(3) - 3x^(2)y^(3), where x...

Let z(x,y) `=x^(3) - 3x^(2)y^(3)`, where `x = se^(t), y =se^(-t), s, t in R`. Find `(del z)/(del s)` and `(del z)/(del t)`

Text Solution

Verified by Experts

The correct Answer is:
`= 3x ^(2) (e ^(3t) + s^(2) e ^(-t))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.7|9 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.8|15 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.5|5 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Problem for practice|45 Videos
  • DISCRETE MATHEMATICS

    PREMIERS PUBLISHERS|Exercise Problems For Practice|30 Videos

Similar Questions

Explore conceptually related problems

If z(x,y) =x tan^(-1)(xy), x=t^(2), y=se^(t), s, t in R , Find (del z)/(del s) and (del z)/(del t) at s=t=1.

Let U(x,y) =e^(x) sin y , where x=st^(2), y =s^(2) t, s, t in R . Find (del U)/(del S), (del U)/(del t) and evaluate them at s=t=1.

Let z(x,y)=xe^(y)+ye^(-x),x=e^(-t),y=st^(2),s,tinRR . Find (delz)/(dels)and(delz)/(delt) .