Home
Class 12
MATHS
If v(x,y) = log (e^(x) + e^(y)), then (d...

If `v(x,y) = log (e^(x) + e^(y))`, then `(del v)/(del x) + (del v)/(del y)` is equal to

A

`e ^(x) + e ^(y)`

B

`(1)/(e ^(x) + e ^(y))`

C

`2`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE|40 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    PREMIERS PUBLISHERS|Exercise EXERCISE 8.7|9 Videos
  • COMPLEX NUMBERS

    PREMIERS PUBLISHERS|Exercise Problem for practice|45 Videos
  • DISCRETE MATHEMATICS

    PREMIERS PUBLISHERS|Exercise Problems For Practice|30 Videos

Similar Questions

Explore conceptually related problems

If u=(x-y)^(2) , then (del u)/(del x) + (del u)/(del y) is

If u (x,y) =x ^(2) + 2xy-y ^(2) then (del u)/(del x) + (delu)/(del y) is:

If u(x,y) =e^(x^(2) + y^(2)) , then (del u)/(del x) is equal to

If v(x,y) = log((x^(2) +y^(2))/(x+y)) , prove that x(del v)/(del x) + y(del v)/(del y)=1 .

If f(x,y) =e^(xy) , then (del^(2)f)/(del x del y) is equal to

If u = log ((x ^(2) y + y ^(2) x)/(xy)) then x (del u)/( del x) + y (del u)/(del y)=