Home
Class 12
MATHS
Show that int(0)^(2pi) g(cosx)dx=2int(0)...

Show that `int_(0)^(2pi) g(cosx)dx=2int_(0)^pi g(cosx)dx`, wher `g(cosx)` is a function of `cosx`.

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISES 9.1|3 Videos
  • APPLICATIONS OF INTEGRATION

    PREMIERS PUBLISHERS|Exercise SOLUTION TO EXERCISES 9.3|15 Videos
  • APPLICATIONS OF DIFFERENTIAL CALCULUS

    PREMIERS PUBLISHERS|Exercise Problems For Practice (Answer the following question)|39 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    PREMIERS PUBLISHERS|Exercise PROBLEMS FOR PRACTICE (II. Answer the following)|15 Videos

Similar Questions

Explore conceptually related problems

Show that int_(0)^(pi) g (sinx)dx=2 int_(0)^((pi)/(2))g(sin)dx , where g(sinx) is a function of sinx .

int_(0)^(pi)(cosx)/(1+sinx)dx=

Evaluate int_(0)^(pi)(cosx/(1+sinx))dx

Evaluate int_(0)^(pi)(e^(cosx))/(e^(cosx)+e^(-cosx))dx .

int_(0)^(pi)(x tanx)/(secx+cosx)dx is

Evaluate : int_0^(pi/2) (sinx+cosx) dx

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

Evaluate : int_(0)^(2pi)(cosx)/(sqrt(4+3 sin x))dx